LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

FOURTH SEMESTER - APRIL 2013

CH 4808 - ELECTROCHEMISTRY

Date: 25/04/2013	Dept. No.	Max.: 100 Marks
Time . 1.00 4.00		

PART - A

Answer any ALL questions:

 $10 \times 2 = 20$

- 1. Calculate the mean ionic activity coefficient of 10⁻³ M BaCl_{2(aq)} using Debye-Huckel limiting law equation at 25°C.
- 2. E° red Fe^{3+} | Fe^{2+} is 0.771V and for Fe^{2+} |Fe is -0.44V calculate E° red for Fe^{3+} |Fe (all at 25°C)
- **3.** Mention the factors that promote ion association in an electrolytic solution.
- **4.** What is electrochemical potential?
- **5.** Define streaming potential.
- **6.** Derive the relation between rate and current density of an electrochemical reaction.
- 7. Define exchange current density. What are the factors determining its magnitude?
- **8.** Explain the condition under which an electrode shows ohmic behavior.
- **9.** Define stoichiometric number.
- **10.** Define concentration over potential. What are the factors contributing to it?

PART – B

Answer any EIGHT questions

 $8 \times 5 = 40$

- **11.** Explain Walden rule and mention its significance.
- **12.** Calculate the thickness of the ionic atmosphere in 0.01M KCl in the following solvents at 25°C: nitrobenzene (D=34.8) and ethanol (D=24.3).
- **13.** Deduce the values of Debye-Huckel-Onsager constants for CH₃OH at 25°C if the dielectric constant is 31.5 and the coefficient of viscosity is 5.45x10⁻⁴ kgm⁻¹s⁻¹.
- **14.** Explain any one method of determining solvation number.
- **15.** Outline the evidences for the existence of electrical double layer and explain.
- **16.** E_{cell} for $Ag|AgBr|Br^-$ (0.1M)||KCl (satd) | $Hg_2Cl_2|Hg$ is 0.11V at 298K. E_{red} of saturated calomel electrode and E°_{red} for $Ag^+|Ag$ are 0.2412V and 0.7994V respectively. Calculate K_{sp} of AgCl.
- 17. What do you mean by polarisable electrode? How is it related to exchange current density?

- **18.** The exchange current density of an electrode and its symmetry factor are 1.35 mAcm⁻² and 0.45, respectively. Calculate its anodic current density at an over potential of 200mV.
- 19. Explain oxygen and hydrogen evolution in (i) acidic (ii) neutral media.
- **20.** Calculate the minimum potential required for the discharge of Cu^{2+} from its $5x10^{-3}M$ solution at 298K (SRP: $Cu^{2+}/Cu = 0.34V$)
- **21.** The reduction of M²⁺ to M follows the following mechanism

$$M^{2+} + 2H_2O \longrightarrow MOH^+ + H_3O^+$$

$$MOH^+ + e \longrightarrow MOH$$

$$MOH + H^{+} + e \rightarrow M + H_{2}O$$

Determine the cathodictransfer coefficient if step-3 is RDS.

22. Discuss any five types of over-potential for an electrode system

PART - C

Answer any FOUR questions:

 $4 \times 10 = 40$

23. Explain any two of the following.

(5+5)

- a) Applications of Debye Huckellimiting law equation
- b) Significance of electrocapillarity curves
- c) Electrokinetic phenomena
- d) Zetapotential and its significance.
- **24.** a) Mention the assumptions of Debye-Huckel theory and derive the linearised Poisson-Boltzmann equation. (2+5)
 - b) Calculate the potentials at distances $3\kappa^{-1}$ due to the cation in 0.001NKCl_(aq) at 298K (3)

$$\kappa^{-1} = 9.607 \times 10^{-9} \text{ m}$$

 $4\pi\epsilon_0 = 1.112 \text{x } 10^{-10} \text{ C}^2 \text{J}^{-1} \text{m}^{-1}$ and the dielectric constant of water is 80.

- 25. a) Discuss the salient features of Gouy-Chapmann model of electrical double layer (7)
 - b) How is Debye-Huckel-Onsager equation verified?

(3)

- **26.** (a) Derive the relationship between current density and over potential for an electrode system involving one electron.
 - (b) Deduce Nernst equation from the above relation.
- **27.** (a) What do you mean by electrode rectification?
 - (b) Discuss Butler-Volmer equation for different symmetry factors, β (<0.5, 0 &>0.5)
- **28.** The deposition of iron follows the following mechanisum:

$$Fe^{2+} + H_2O \implies FeOH^+ + H^+ \qquad Eqcont K_1.....(1)$$

$$FeOH^+ + e \implies FeOH$$
 Eq cont K_2(2)

FeOH + H⁺ + e
$$\rightleftharpoons$$
 Fe +H₂O Eq cont K₃.....(3)

Determine the 1	reaction order with respect Fe ²⁺ and the transfer coefficients in both directions if ste	ep-
2 is RDS.		